资源类型

期刊论文 52

年份

2023 7

2022 6

2021 5

2020 4

2019 4

2018 3

2017 1

2016 3

2015 3

2014 1

2013 5

2012 1

2011 1

2010 1

2008 3

2007 2

2001 2

展开 ︾

关键词

半导体可靠性 1

协同晶化 1

吸附 1

吸附层 1

四环素 1

地下水处理厂污泥 1

微机电系统(MEMS) 1

朗道和郎之万动力学模拟 1

湿度 1

电子束曝光 1

磁赤铁矿 1

粘度 1

纳米复合材料 1

纳米复合涂层 1

纳米耦合 1

蒸汽压力 1

薄膜润滑 1

超疏水 1

轴承 1

展开 ︾

检索范围:

排序: 展示方式:

A magnetic adsorbent based on salicylic acid-immobilized magnetite nano-particles for pre-concentration

Hossein Abdolmohammad-Zadeh, Arezu Salimi

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 450-459 doi: 10.1007/s11705-020-1930-0

摘要: In this research, an eco-friendly magnetic adsorbent based on Fe O /salicylic acid nanocomposite was fabricated using a facile one-pot co-precipitation method. The crystalline and morphological characterization of the prepared nanocomposite was performed by field emission scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The nanocomposite was employed as a magnetic solid-phase extraction agent for separation of Cd(II) ions from synthetic solutions. Some experimental factors affecting the extraction efficiency were investigated and optimized. Following elution with acetic acid (pH 3.5), the pre-concentrated analyte was quantified by flame atomic absorption spectrometry. In optimal conditions, a linear calibration graph was achieved in the concentration range of 0.2‒30 ng·mL with a determination coefficient ( ) of 0.9953. The detection limit, the enhancement factor, inter- and intra-day relative standard deviations (for six consecutive extractions at the concentration level of 10 ng·mL ) were 0.04 ng·mL , 100, 2.38% and 1.52%, respectively. To evaluate the accuracy of the method, a certified reference material (NIST SRM 1643e) was analyzed, and there was a good agreement between the certified and the measured values. It was successfully utilized to determine cadmium in industrial wastewater samples and the attained relative recovery values were between 96.8% and 103.2%.

关键词: cadmium     magnetic solid-phase extraction     Fe3O4 nanoparticles     Fe3O4/salicylic acid nanocomposite     flame atomic absorption spectrometry    

Validation of polymer-based nano-iron oxide in further phosphorus removal from bioeffluent: laboratory and scaled-up study

Ming HUA, Lili XIAO, Bingcai PAN, Quanxing ZHANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 435-441 doi: 10.1007/s11783-013-0508-1

摘要: The efficient removal of phosphorous from water is an important but challenging task. In this study, we validated the applicability of a new commercially available nanocomposite adsorbent, i.e., a polymer-based hydrated ferric oxide nanocomposite (HFO-201), for the further removal of phosphorous from the bioeffluent discharged from a municipal wastewater treatment plant, and the operating parameters such as the flow rate, temperature and composition of the regenerants were optimized. Laboratory-scale results indicate that phosphorous in real bioeffluent can be effectively removed from 0.92 mg·L to<0.5 mg·L (or even<0.1 mg·L as desired) by the new adsorbent at a flow rate of 50 bed volume (BV) per hour and treatable volume of 3500–4000 BV per run. Phosphorous removal is independent of the ambient temperature in the range of 15°C–40°C. Moreover, the exhausted HFO-201 can be regenerated by a 2% NaOH+ 5% NaCl binary solution for repeated use without significant capacity loss. A scaled-up study further indicated that even though the initial total phosphorus (TP) was as high as 2 mg·L , it could be reduced to<0.5 mg·L , with a working capacity of 4.4–4.8 g·L HFO-201. In general, HFO-201 adsorption is a choice method for the efficient removal of phosphate from biotreated waste effluent.

关键词: bioeffluent     phosphorus removal     nanocomposite adsorbent     hydrated ferric oxide    

LDL adsorbent with dendrimer PAMAM as spacer

YUAN Yi, WANG Yanming, YU Yaoting

《化学科学与工程前沿(英文)》 2008年 第2卷 第4期   页码 434-438 doi: 10.1007/s11705-008-0084-2

摘要: Dendritic polymers are three-dimensional, highly ordered compounds formed by reiterative reaction sequences, and via discrete stages referred to as generations. To study the spacer effect of low density lipoprotein (LDL) adsorbent, we linked dendrimer polyamidoamine (PAMAM) generation 1 (G1), generation 3 (G3) and generation 5 (G5) to cellulose beads, respectively, and then determined the adsorption proportion of the adsorbents with PAMAM decorated with taurine. The result shows that the spacer with activated multi-points could efficiently improve the adsorption capacity of the adsorbent.

关键词: adsorption proportion     adsorbent     dendrimer polyamidoamine     reiterative     generation    

Enrichment of CO from syngas with Cu(I)Y adsorbent by five-bed VPSA

Shuna LI, Huawei YANG, Donghui ZHANG

《化学科学与工程前沿(英文)》 2013年 第7卷 第4期   页码 472-481 doi: 10.1007/s11705-013-1351-4

摘要: Cu(I)Y adsorbent was prepared by reduction of Cu(II)Y which was prepared by ion exchange between the NaY zeolite and a solution of Cu(II) chloride. The dynamic adsorption capacity of Cu(I)Y for CO was calculated by adsorption breakthrough curve measured on a fixed bed at 30°C and 0.006 MPa (g) of CO partial pressure. The calculated CO adsorption capacity was 2.14 mmol/g, 37.5 times as much as that of NaY zeolite. The adsorption breakthrough curve experiment was also simulated with Aspen Adsorption software and the results were approximately consistent with experimental results. Then a five-bed VPSA process for separating CO from syngas on this adsorbent was dynamically simulated with Aspen Adsorption software with the adsorption pressure of 0.68 MPa (g) and the desorption pressure of -0.075 MPa (g). The results showed that CO was enriched from 32.3% to 95.16%–98.12%, and its recovery was 88.47%–99.44%.

关键词: Cu(I)Y adsorbent     breakthrough curve     desorption     VPSA     simulation    

Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water

《环境科学与工程前沿(英文)》 2023年 第17卷 第7期 doi: 10.1007/s11783-023-1689-x

摘要:

● Application of the MOF-composite membranes in adsorption was discussed.

关键词: Emerging organic contaminants     Metal organic frameworks     Synthesis     Adsorption     Catalysis    

Preparation, characterization of sludge adsorbent and investigations on its removal of hydrogen sulfide

Fen LI,Tao LEI,Yanping ZHANG,Jinzhi WEI,Ying YANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第2期   页码 190-196 doi: 10.1007/s11783-014-0628-2

摘要: To recycle the sludge resource from sewage treatment plants and solve the problem of odor pollution, the sludge was converted into an adsorbent by carbonized pyrolysis and the process was optimized by orthogonal experiments. The capability for odor removal as well as the structure of the adsorbent was studied with H S as a target pollutant. The results indicate that the main factor affecting the deodorization performance of the adsorbent is the activating time. The sludge adsorbent sample SAC1 prepared under optimum conditions exhibits the best deodorization performance with a H S breakthrough time of 58 min and an iodine value nearly that of the coal activated carbon. The breakthrough time of H S is much longer than that on the coal activated carbon. On the other hand, characterization results from X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and scanning electron microscope (SEM) techniques show that SAC1 is composed of mainly graphite carbon with lower oxygen content on the surface. The bulk of SAC1 exhibits a honeycomb structure with well developed porosity and a high specific surface area of 120.47 m ·g , with the average pore diameter being about 5 nm. Such a structure is in favor of H S adsorption. Moreover, SAC1 is detected to contain various metal elements such as Zn, Fe, Mg, etc., leading to a superior deodorization property to that of coal activated carbon.

关键词: orthogonal experiment     sludge adsorbent     hydrogen sulfide    

Advanced materials: adsorbent and catalyst for environmental application

Junhua LI, Shubo DENG

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 301-301 doi: 10.1007/s11783-013-0529-9

Magnetic KIT-6 nano-composite and its amino derivatives as convenient adsorbent for U(VI) sequestration

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2037-2049 doi: 10.1007/s11705-023-2358-0

摘要: Although mesoporous silica with magnetically hybridized two-dimensional channel structures has been well studied in recent years, it remains a challenge to fabricate the counterpart with macroporous three-dimensional cubic structures since the highly acidic preparation conditions lead to dissolution of magnetic particles. Herein, we successfully prepared magnetic KIT-6 nano-composite and its amino derivatives by bearing acid-resistant iron oxide. The prepared materials exhibited excellent properties for U(VI) ions removal from aqueous solutions under various conditions. The experimental data show that the U(VI) adsorption features fast adsorption kinetics, high adsorption capacity and ideal selectivity toward U(VI). The adsorption process is of spontaneous and endothermic nature and ionic strength independence, and the adsorbents can be easily regenerated by acid treatment. Compared to pristine KIT-6, the introduction of magnetism does not reduce the efficiency of the material to remove U(VI) while exerting its role as a recovery adsorbent. The findings of this work further demonstrate the potential broad application prospects of magnetic hybrid mesoporous silica in radionuclide chelation.

关键词: magnetic nanoparticle     3D mesoporous silica     amino functionalization     adsorption of U(VI)     acid resistance    

Correction to: Highly degradable chitosan-montmorillonite (MMT) nanocomposite hydrogel for controlled

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1704-2

Nanocomposite materials in orthopedic applications

Mostafa R. Shirdar, Nasim Farajpour, Reza Shahbazian-Yassar, Tolou Shokuhfar

《化学科学与工程前沿(英文)》 2019年 第13卷 第1期   页码 1-13 doi: 10.1007/s11705-018-1764-1

摘要:

This chapter is an introduction to nanocomposite materials and its classifications with emphasis on orthopedic application. It covers different types of matrix nanocomposites including ceramics, metal, polymer and natural-based nanocomposites with the main features and applications in the orthopedic. In addition, it presents structure, composition, and biomechanical features of bone as a natural nanocomposite. Finally, it deliberately presents developing methods for nanocomposites bone grafting.

关键词: nanocomposite materials     orthopedic applications     bone grafting nanocomposites     nanocomposites classification    

Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to

Nima Kamali, Abdollah Rashidi Mehrabadi, Maryam Mirabi, Mohammad Ali Zahed

《环境科学与工程前沿(英文)》 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1249-6

摘要: Abstract • Nanocomposites were prepared by adding dolomite to vinasse at different ratio. • Textural and morphological features of adsorbents were studied in detail. • CCD based RSM was used for investigation of P ion removal by nanocomposite. • The qm based on Langmuir model for modified vinasse biochar was 178.57 mg/g. • P loaded nanocomposite improved plant growth and could be utilized as P-fertilizer. The effectiveness of phosphate (P) removal from aqueous solutions was investigated by novel low-cost biochars synthesized from vinasse and functionalized with calcined dolomite. The vinasse-derived biochar, synthesized via pyrolysis at different temperatures, showed easy preparation and a large surface area. The novel vinasse biochar nanocomposites were prepared by adding dolomite to the vinasse biochars with different weight percentages (10, 20 and 30%). The characteristics of the prepared materials were identified for further understanding of the inherent adsorption mechanism between P ions and vinasse biochars. Vinasse-dolomite nanocomposite was very effective in the adsorption of P species from aqueous media. The effect of the operational factors on Vinasse-dolomite nanocomposite was explored by applying response surface methodology (RSM). According to RSM results, the optimum condition was achieved to be contact time 90 (min), 250 (mg/L) of P concentration and pH 7. Thermodynamic isotherm and kinetic studies were applied on experimental data to understand the adsorption behavior. The Vinasse-dolomite nanocomposite revealed preferential P species adsorption in the presence of co-existing anions. The P species could be recovered by 1.0 M HCl where the efficiency was not affected up to the fifth cycle. The P-loaded Vinasse-dolomite nanocomposite was successfully tested on a plant; it significantly improved its growth and proved its potency as a P-based fertilizer substitute.

关键词: Biochar     Vinasse     Dolomite     Phosphate     Fertilizer    

Newly-modeled graphene-based ternary nanocomposite for the magnetophotocatalytic reduction of CO2 with

《化学科学与工程前沿(英文)》 2022年 第16卷 第10期   页码 1438-1459 doi: 10.1007/s11705-022-2166-y

摘要: The development of CO2 into hydrocarbon fuels has emerged as a green method that could help mitigate global warning. The novel structured photocatalyst is a promising material for use in a photocatalytic and magneto-electrochemical method that fosters the reduction of CO2 by suppressing the recombination of electron−hole pairs and effectively transferring the electrons to the surface for the chemical reaction of CO2 reduction. In our study, we have developed a novel-structured AgCuZnS2–graphene–TiO2 to analyze its catalytic activity toward the selective evolution of CO2. The selectivity of each nanocomposite substantially enhanced the activity of the AgCuZnS2–graphene–TiO2 ternary nanocomposite due to the successful interaction, and the selectivity of the final product was improved to a value 3 times higher than that of the pure AgCuZnS2 and 2 times higher than those of AgCuZnS2–graphene and AgCuZnS2–TiO2 under ultra-violet (UV)-light (λ = 254 nm) irradiation in the photocatalytic process. The electrochemical CO2 reduction test was also conducted to analyze the efficacy of the AgCuZnS2–graphene–TiO2 when used as a working electrode in laboratory electrochemical cells. The electrochemical process was conducted under different experimental conditions, such as various scan rates (mV·s–1), under UV-light and with a 0.07 T magnetic-core. The evolution of CO2 substantially improved under UV-light (λ = 254 nm) and with 0.07 T magnetic-core treatment; these improvements were attributed to the facts that the UV-light activated the electron-transfer pathway and the magnetic core controlled the pathway of electron-transmission/prevention to protect it from chaotic electron movement. Among all tested nanocomposites, AgCuZnS2–graphene–TiO2 absorbed the CO2 most strongly and showed the best ability to transfer the electron to reduce the CO2 to methanol. We believe that our newly-modeled ternary nanocomposite opens up new opportunities for the evolution of CO2 to methanol through an electrochemical and photocatalytic process.

关键词: ternary nanocomposite     photocatalytic     electrochemical CO2 reduction     UV-light     magnetic core    

-Cyclodextrin functionalized graphene oxide: an efficient and recyclable adsorbent for the removal of

Shanshan WANG, Yang LI, Xiaobin FAN, Fengbao ZHANG, Guoliang ZHANG

《化学科学与工程前沿(英文)》 2015年 第9卷 第1期   页码 77-83 doi: 10.1007/s11705-014-1450-x

摘要: A novel method for the preparation of -cyclodextrin grafted graphene oxide (GO- -CD) has been developed. The GO- -CD was characterized by Fourier transform infrared spectroscopy, C NMR spectroscopy, Raman spectroscopy and thermogravimetric analysis. The ability of GO- -CD to remove fuchsin acid from solution was also studied. The GO- -CD had an excellent adsorption capacity for fuchsin acid and could be recycled and reused. The adsorption capacities of GO- -CD for other dye pollutants such as methyl orange and methylene blue were also investigated. The absorption capacities for the three dyes are in the order: fuchsin acid>methylene blue>methyl orange.

关键词: graphene oxide     β-cyclodextrin     adsorption capacity     recycle    

Reduction kinetics of SrFeO/CaO∙MnO nanocomposite as effective oxygen carrier for chemical looping partial

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1726-1734 doi: 10.1007/s11705-022-2188-5

摘要: Chemical looping reforming of methane is a novel and effective approach to convert methane to syngas, in which oxygen transfer is achieved by a redox material. Although lots of efforts have been made to develop high-performance redox materials, a few studies have focused on the redox kinetics. In this work, the kinetics of SrFeO3−δ–CaO∙MnO nanocomposite reduction by methane was investigated both on a thermo-gravimetric analyzer and in a packed-bed microreactor. During the methane reduction, combustion occurs before the partial oxidation and there exists a transition between them. The weight loss due to combustion increases, but the transition region becomes less inconspicuous as the reduction temperature increased. The weight loss associated with the partial oxidation is much larger than that with combustion. The rate of weight loss related to the partial oxidation is well fitted by the Avrami–Erofeyev equation with n = 3 (A3 model) with an activation energy of 59.8 kJ∙mol‒1. The rate law for the partial oxidation includes a solid conversion term whose expression is given by the A3 model and a methane pressure-dependent term represented by a power law. The partial oxidation is half order with respect to methane pressure. The proposed rate law could well predict the reduction kinetics; thus, it may be used to design and/or analyze a chemical looping reforming reactor.

关键词: chemical looping reforming     SrFeO3−δ/CaO·MnO nanocomposite     reduction kinetics     Avrami–Erofeyev model     pressure-dependent term    

Reactive adsorption desulfurization over a Ni/ZnO adsorbent prepared by homogeneous precipitation

Aihua KONG, Yanyu WEI, Yonghong LI

《化学科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 170-176 doi: 10.1007/s11705-013-1322-9

摘要: A high-performance Ni/ZnO adsorbent was prepared by homogeneous precipitation using urea hydrolysis and characterized by N adsorption-desorption, X-ray diffraction (XRD), and scanning electron microscope (SEM). The adsorbent was applied to the deep desulfurization of gasoline and showed a high breakthrough sulfur capacity and a remarkably high volume hourly space velocity. The effects of coexisting olefins in gasoline as well as adsorptive conditions on the adsorptive performance were examined. It was found that olefins in gasoline had a slightly inhibiting effect on the desulfurization performance of the adsorbent. The optimum conditions were 673 K, 1.0 Mpa with a volume hourly space velocity of 60 h . Under the optimum conditions, ultralow sulfur gasoline could be produced and the breakthrough sulfur capacity of the adsorbent was 360 mg-s/g-sorb for the model gasoline.

关键词: nickel     reactive adsorption     desulfurization     thiophene    

标题 作者 时间 类型 操作

A magnetic adsorbent based on salicylic acid-immobilized magnetite nano-particles for pre-concentration

Hossein Abdolmohammad-Zadeh, Arezu Salimi

期刊论文

Validation of polymer-based nano-iron oxide in further phosphorus removal from bioeffluent: laboratory and scaled-up study

Ming HUA, Lili XIAO, Bingcai PAN, Quanxing ZHANG

期刊论文

LDL adsorbent with dendrimer PAMAM as spacer

YUAN Yi, WANG Yanming, YU Yaoting

期刊论文

Enrichment of CO from syngas with Cu(I)Y adsorbent by five-bed VPSA

Shuna LI, Huawei YANG, Donghui ZHANG

期刊论文

Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water

期刊论文

Preparation, characterization of sludge adsorbent and investigations on its removal of hydrogen sulfide

Fen LI,Tao LEI,Yanping ZHANG,Jinzhi WEI,Ying YANG

期刊论文

Advanced materials: adsorbent and catalyst for environmental application

Junhua LI, Shubo DENG

期刊论文

Magnetic KIT-6 nano-composite and its amino derivatives as convenient adsorbent for U(VI) sequestration

期刊论文

Correction to: Highly degradable chitosan-montmorillonite (MMT) nanocomposite hydrogel for controlled

期刊论文

Nanocomposite materials in orthopedic applications

Mostafa R. Shirdar, Nasim Farajpour, Reza Shahbazian-Yassar, Tolou Shokuhfar

期刊论文

Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to

Nima Kamali, Abdollah Rashidi Mehrabadi, Maryam Mirabi, Mohammad Ali Zahed

期刊论文

Newly-modeled graphene-based ternary nanocomposite for the magnetophotocatalytic reduction of CO2 with

期刊论文

-Cyclodextrin functionalized graphene oxide: an efficient and recyclable adsorbent for the removal of

Shanshan WANG, Yang LI, Xiaobin FAN, Fengbao ZHANG, Guoliang ZHANG

期刊论文

Reduction kinetics of SrFeO/CaO∙MnO nanocomposite as effective oxygen carrier for chemical looping partial

期刊论文

Reactive adsorption desulfurization over a Ni/ZnO adsorbent prepared by homogeneous precipitation

Aihua KONG, Yanyu WEI, Yonghong LI

期刊论文